By Brook Valley Calculation Progression

Intent: At By Brook Valley School we believe having a clear progression of concrete, pictorial and abstract sequences in our teaching the children will be able to make links and build on previous learning providing a clear and consistent approach to teaching calculation across the school. By embedding mathematical confidence through speaking in full mathematical sentences and using the correct vocabulary this will enable children to secure and deepen their mathematical understanding as they progress through the school.

Implementation: At By Brook Valley School we use the White Rose maths medium term plans to underpin our maths planning throughout the year which provides consistency and continuity across the school. However, we adapt the teaching sequences to the needs of our children and individual class delivery. The White Rose maths block plans provide a scaffold for the teaching sequence which follows the set calculation methods mapped out by White Rose but we heavily support and adapt our teaching with materials like the NCETM Progression Maps for Reasoning and Teaching for Mastery. In our school planning a teaching sequence in mathematics guidance there is a list of materials which we use to support our teaching to enable the children as mathematicians to notice, describe, explain and make connections in their learning.

Impact: At By Brook Valley School the children will be familiar with a variety of representations in their calculation methods and be confident to select and draw upon the calculation method(s) they find most purposeful to describe, explain, compare and evaluate. They will be skilled in their level of understanding to use mathematical vocabulary and sentence stems to explain their mathematical understanding, sometimes with multiple representations to compare and evaluate efficiency and reliability and be able to make links and relationships interchangeably.

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial		Abstract
$\begin{aligned} & \text { H } \\ & \stackrel{1}{\infty} \\ & \underset{\sim}{\sim} \end{aligned}$		Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar. \square	$\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$	Use the part -part whole shown above
		Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Use a number line to count on in ones.	$5+3=8$	

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$		$6+5=11$ Start with the bigger number and use the smaller number to make 10.	$\begin{aligned} & 6+4=10 \\ & 10+1=11 \end{aligned}$	$6+5=11$
$\begin{aligned} & N \\ & \underset{\sim}{\mathbb{N}} \\ & \underset{\sim}{\sim} \end{aligned}$		$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \mathrm{N} \\ & \frac{i}{\pi} \\ & \underset{\sim}{\sim} \end{aligned}$		Add together the ones first, then add the tens. Use the Base 10 blocks first before moving onto place value counters. $24+15=$ $44+15=$	After physically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	$\begin{aligned} & 24+15=39 \\ & 24 \\ & +15 \\ & \hline 39 \end{aligned}$
		Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten.	Using place value counters, children can draw the counters to help them to solve additions. $\bigcirc \bigcirc$	$\begin{aligned} & 40+9 \\ & \frac{20+3}{60+12}=72 \end{aligned}$

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \stackrel{ \pm}{m} \\ & \substack{\pi\\ } \end{aligned}$		Make both numbers on a place value grid. Add up the units and exchange 10 ones As children move on to decimals, money and decimal place value counters can be used to support learning. NB By Year 4 children will progress on to adding four digit numbers.	100s 100s Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding. NB Addition of money needs to have $£$ and p added separately.	$\begin{aligned} & 100+40+6 \\ & \frac{500+20+7}{600+70+3}=673 \end{aligned}$ As the children progress, they will move from the expanded to the compacted method. $\begin{array}{r} 146 \\ +527 \\ \hline 673 \end{array}$ 1 As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.
		Consolidate understanding using numbers with more than 4 digits and extend by adding numbers with up to 3 decimal places.		

CALCULATION GUIDANCE: Subtraction

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { H } \\ & \frac{1}{\pi} \\ & \underset{\sim}{2} \end{aligned}$		Use physical objects, counters, cubes etc. to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $4-2=2$	$4-2=2$
		Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4=9$	Count back on a number line or number track Start at the bigger number and count back the smaller number, showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.
		Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.	Count on to find the difference. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw bars to find the difference between 2 numbers.	Hannah has 8 goldfish. Helen has 3 goldfish. Find the difference between the number of goldfish the girls have.

CALCULATION GUIDANCE: Subtraction

	Objective	Concrete	Pictorial	Abstract
$$		$75-42=33$ Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	 Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

CALCULATION GUIDANCE: Subtraction

CALCULATION GUIDANCE: Subtraction

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { 을 } \\ & m \\ & \stackrel{1}{\pi} \\ & \underset{\sim}{\sim} \end{aligned}$		Now look at the tens, can I take away 8 tens easily? I need to exchange 1 hundred for 10 tens. Now I can take away 8 tens and complete my subtraction. Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.		

CALCULATION GUIDANCE: Multiplication

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\pi} \\ & \stackrel{1}{\sim} \end{aligned}$		Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there?	Write addition sentences to describe objects and pictures. $2+2+2=6$

CALCULATION GUIDANCE: Multiplication

CALCULATION GUIDANCE: Multiplication

CALCULATION GUIDANCE: Multiplication

Objective	Concrete		Pictorial		Abstract
	Show the link with arrays to first introduce the expanded method.	10 3	$\begin{array}{\|ll} \hline & 1 \\ & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 100 \\ 0 & \\ 0 & \\ 0 & 30 \end{array}$	80000000000800000000 000000000 0000000 24	18 $\times \frac{13}{24}(3 \times 8)$ Start with long multiplication, reminding the children about lining $30(3 \times 10))$ up their numbers clearly $80(10 \times 8)$ in columns. $\frac{100(10 \times 10)}{234}$

CALCULATION GUIDANCE: Multiplication

$\begin{aligned} & \stackrel{0}{\omega} \\ & \dot{\bar{\omega}} \\ & \underset{\sim}{\sim} \end{aligned}$		Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. This moves to the more compact method. $\begin{array}{r} 1342 \\ \times \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \end{array}$

CALCULATION GUIDANCE: Division

	Objective	Concrete	Pictorial	Abstract
	$\begin{aligned} & \text { en } \\ & \stackrel{2}{0} \\ & \stackrel{y}{n} \end{aligned}$	I have 8 cubes, can you share them equally between two people?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 8 buns between two people. $8 \div 2=4$
		Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 10 \div 5=? \\ & 5 \times ?=10 \end{aligned}$	$10 \div 5=2$ Divide 10 into 5 groups. How many are in each group?

CALCULATION GUIDANCE: Division

	Objective	Concrete	Pictorial	Abstract
		Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\text { Eg } \begin{array}{rl} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	lines to split the array into groups to make multiplication and division	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 \end{aligned}$
		Use place value counters to divide using the short division method alongside. $96 \div 3$ $42 \div 3$ Start with the biggest place value We are \qquad sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for 10 ones and then share the ones equally among the groups. We look at how many are in each group.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder.

CALCULATION GUIDANCE: Division

	Objective	Concrete	Pictorial	Abstract
		$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r .
		$364 \div 3=$ $\begin{array}{l\|l} & 121 \text { rem } 1 \\ & 364 \end{array}$		Move onto divisions with a remainder. Once children understand remainders,

CALCULATION GUIDANCE: Division

